M. LABEAU et al.

Many details relating to the formation of the
microdomains and the structural modifications at the
domain boundaries remain unknown and further
studies on this interesting material are warranted, using
high-resolution electron microscopy as well as inelastic
neutron diffraction.
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Abstract

The properties of Gaussian growth-disorder models are
explored and their use for producing realizations of
disordered lattices for optical transform analogue
experiments is described. Use of Gaussian variables
provides greater flexibility than previously described
binary ones and in particular enables realizations to be
produced in dimensions greater than two without
restriction on the values of nearest-neighbour cor-
relation coefficients. A method of converting Gaussian
realizations to binary ones is also described.

1. Introduction

Optical transform methods (Lipson, 1973) have
become well established as aids in deducing the
structure of materials from their X-ray diffraction
patterns. Although for non-disordered single-crystal
structure determination the method cannot compete
with computer calculations, for non-crystalline or
disordered materials the method still has considerable
appeal, not least being the power of the visual
presentation of results to stimulate thought and aid in
the development of intuition. The production of an
optical transform from a screen representing a compli-
cated statistical distribution of atoms or molecules is
just as readily performed as from one representing the
simplest regular arrangement. With the advent of fast
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digital to film writing devices the production of the
basic diffraction screen (Harburn, Miller & Welberry,
1974) is now readily performed under computer
control.

However, while it is now possible to produce
diffraction screens containing ~10° scattering points
very rapidly and easily compared with the tedious
manual techniques previously employed, the very size
of the assembly presents quite a new problem. This
concerns the way in which the actual distribution of
scattering points is generated. The complicated
statistical distribution of atoms and molecules men-
tioned above arises in nature in ways which must be
mimicked in the generating computer program. While
in principle the underlying physics may be understood
sufficiently to make this possible, in practice the
process is often far too lengthy for an assembly of
points anywhere near as large as that desirable to
obtain a good noise-free diffraction pattern, even for a
simple physical model such as the spin-} Ising model.

For this reason we have developed a number of
stochastic models called ‘growth-disorder models’
(Welberry & Galbraith, 1973) which may be used to
generate rapidly and easily, using a simple algorithm,
spatial distributions of random variables having specific
statistical properties. While these provide distributions
less general than might be supposed to occur in real
substances, they nevertheless still have considerable
flexibility so that it is likely that any real physical effect
may be approximated quite satisfactorily. Several
examples in which these models have been used to

© 1982 International Union of Crystallography



762

assist in the interpretation of diffraction problems have
already been reported (Welberry & Jones, 1980;
Welberry, Miller & Carroll, 1981; Welberry, Jones &
Epstein, 1982; Welberry, 1982).

To date the development of growth-disorder models
has largely concentrated on the use of binary random
variables with the intention that the two ‘states’ of the
variables would represent, for example, alternative
orientations of a molecule in a disordered molecular
crystal, or two different atomic or molecular species in
a solid solution. Certain classes of growth-disorder
models are easily soluble (Welberry, 1977; Welberry,
Miller & Pickard, 1979) and it is these models that have
proved most useful for the generation of optical
diffraction screens representing disordered lattice
distributions.

Growth-disorder models have, however, some limi-
tations which stem directly from the fact that they are
‘grown’ in a unilateral fashion from some predeter-
mined boundary conditions. However, since it is this
unilateral growth which allows the rapid generation of
large arrays suitable for optical diffraction experi-
ments, discarding this aspect in favour of say Ising-like
models, which require lengthy iterative procedures to
obtain realizations, is not generally feasible. One
particular problem encountered in these models is that
in three dimensions (3D) the range of statistical
correlation values that can be built into lattice
distributions is severely limited (see Welberry, Miller &
Pickard, 1979) allowing only fairly small degrees of
short-range order.

In order to extend the range of models available we
have turned our attention to stochastic models which
make use of continuous random variables, and in
particular Gaussian variables. Initial investigations in
the use of these variables suggested that some of the
problems encountered with binary variables could be
eliminated. In a recent paper we developed one aspect
of these Gaussian models and we refer the reader to this
paper for background references (Welberry, Miller &
Carroll, 1980). In the present paper we develop
Gaussian models in more detail and explain their use
for a number of applications.

The structure of the paper is as follows. In § 2 we
outline the theory of a 2D model on a rectangular
lattice and place it in the context of more general
models. In § 3 we derive the diffracted intensity
distribution for a 2D model comprising two indepen-
dent sets of random variables which represent atomic
displacements in two orthogonal directions. Com-
parison is made with optical diffraction patterns. In § 4
we show how the same model may readily be extended
to higher dimensions. In § 5 we describe a procedure to
convert Gaussian realizations to binary ones. Finally,
in § 6 we discuss from a practical view-point the use of
Gaussian growth-disorder models for producing optical
diffraction models of disordered lattices.

GAUSSIAN GROWTH-DISORDER MODELS

2. A two-dimensional model on a rectangular lattice

In an earlier paper (Welberry, Miller & Carroll, 1980)
we considered the joint distribution of the four variables
X 45X, X, Xp on a single unit cell (see Fig. 1), namely

P(X, Xps Xy Xp) =Kexpi—I X3+ X3+ XL+ X},
—2r(X, Xp + Xc Xp)
—25(X, Xo + Xy Xy)
+2rs( X, Xp + X X))
x [20%(1 —r)(1 =) 'L (1)

This distribution has rectangular symmetry (mm) and
moreover will factorize as follows.

P(X,, X Xe, Xp) = P(X,) P(Xy/X,) P(X /X )
X P(XD/XA,XB$XC)9 (2)

where
_Xi

P(X,)=K exp Y= } (3)
(X — 2

P(X,/X,) =K exp 2(72?1%;))} 4)
—(Xo—sX,)?

P(X./X,) =K exp ﬁ;—] 5)

P(Xp/X X5, Xc)

—(Xp—sXp—rXc + rsX,)?

=K e T =) } ©)

The K’s in the above equations (1)-(6) are nor-
malization constants which are different in each
expression. ¢ is the standard deviation of the random
variable at a single site and r,s are nearest-neighbour
correlation coefficients.

The above factorization allows us to construct, in a
growth-disorder-model fashion, realization of lattice
distributions in which the ensemble average of the
distribution on the unit cell is given by (1). This is
achieved by replacing the local site variables
XpsXp, Xy X, by the lattice variables X;;, X;_, ;,

1j-1» X;_1,;_1 and using the conditional relations (2)
to (6) successively to add points to the lattice. Such a
construction is possible because the factorization, (2),
implies the conditional independence relation that X is
independent of X, given X,. [Note that the symmetry
of (1) ensures that other symmetry-related conditions
also hold.] This means that, in Fig. 1, when adding the
point D using (6) we do not need simultaneously to
consider the dependence of X, on X, and X . For
further details of constructing lattice distributions see
§ 6.

In order to produce lattice realizations we simply use
(3) for the first point, (4) and (5) for all points in
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sequence along boundary edges and (6) for the
remaining bulk of the lattice. In common with the
corresponding binary model lattices (see Welberry,
1977; Pickard, 1980), lattices generated in this way are
immediately stationary [ie. P(X;;, X,_, ;, X,
X;_,,;_y) is independent of i/l and also have the
property that Markov chains are embedded along every
pathway in the lattice whose steps along each of the
axes are always in the same direction. This implies that

the correlations are geometric, i.e.

pkl — rlkl Slll, (7)

where

P = <Xi—ka—l> - <)(i>z
b =)y

Here we use { ) to denote expectation values over all
i,j. For further details see Pickard (1980).

It is fruitful to consider an alternative treatment of
such a lattice of Gaussian variables as that described
above. We can consider the whole (say n x m) lattice
as a multivariate Gaussian distribution of N (= 1 x m)
variables for which the probability density is given quite
generally by

1
(27)V'*(det vy

where X, is one of the zero mean variables and V is the
N x N covariance matrix. V is a real symmetric matrix
for which all the eigenvalues must be positive in order
to have convergence of the Gaussian integral (see e.g.
Rosenblatt, 1978, p. 28, or Miller, 1975, p. 7). A
number of simplifications ensue if the N variables
represent the variables on the # x m lattice and we
require that we have translational symmetry (for finite
n and m we wrap the lattice on a torus). In addition to
providing that the variance of each variable is the same
lie. (V),, = o for all a] the translational symmetry
results in the matrix inversion becoming relatively
simple.

(®)

exp |4 S 5 X, (V ap Xyls (9
a B

growth
direction

Fig. 1. Lattice-site labelling for the 2D growth-disorder model.

i+1
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We make a further simplification of the general
distribution (9) by requiring that the variables only
interact with close neighbours, so that

> %XQ(V“)QI,X,, =Y 3 X, lAX,;+ 2BX,_,
@ L

+ 2CXi,j—l + 2D(Xi—],j—1
+ X0l (10)

i.e. each diagonal element of V"' is 4 and off-diagonal
elements are equal to B, C, D or zero.

The inversion of this simplified matrix to obtain the
covariance matrix V' can now be performed quite
explicitly. In particular, this inversion gives the co-
variances associated with nearest-neighbour points in
the axial and diagonal directions. If we define the
variance, ¢%, and the nearest-neighbour correlation
coefficients r,s by

<Xi,j2> = 0% <Xi,j—l Xi,j> =so%;

(Xi_yj Xij) =ro, (11)
then the covariance matrices for the two variables
associated with neighbouring sites of the lattice in the
axial directions are

1(1 r) ’(l s)
g- and o° .
r 1 s 1

The values of r and s may be obtained explicitly in
terms of the interaction parameters 4,B,C,D of (11).
Similarly correlations between more distant neigh-
bours may be determined, but in general these will not
be simply related to the nearest-neighbour correlations
rands.

We now come to the crucial step which links this
description to the growth-disorder model formulation
described above. We find that by imposing one
condition on 4,B,C,D, namely

AD—-BC=0, (12)

the covariance matrix takes on the simple form where
correlations obey the geometric relation (8) and in
particular the diagonal correlation, ¢ say, is given by 1 =
rs. We thus conclude that this special case of the
general multivariate Gaussian distribution corresponds
to the growth-disorder-model formulation expressed in
(4)%(7). Further discussion of the cases AD — BC # 0
will be the subject of a future paper. For present
purposes we confine our attention to the growth-
disorder-model special case for which realizations are
easily obtained via (4)-(7). We note in passing that this
formulation in which the total multivariate distribution
is obtained by multiplying together factors, which are
themselves positive definite (for 2 < 1, s? < 1),
automatically ensures that the whole matrix V is also
positive definite. The same result does not necessarily
hold for cases other than (12) and it is necessary to
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ensure that the whole matrix V is positive definite and
not merely the sub-matrices referring to nearest
neighbours.

3. Diffracted intensity distribution from a simple
two-dimensional model

It is instructive to consider a particular example of a
2D Gaussian growth-disorder model in order to obtain
some feeling for the general properties which might
carry over to more complicated models, and to provide
illustrations which can be compared to theory. For this
purpose we choose to discuss a 2D model on a square
lattice with one atom per unit cell in which displace-
ments of the atoms from their mean positions are
specified by two sets of random variables X, ,,and Y, .
Here we have changed the indices specifying the lattice
for convenience, and for the same reason we assume
the lattice constants to be unity. Hence the atom
position corresponding to the (/,m)th lattice point is

x=1+X,,
y=m+Y .

In general, the zero-mean Gaussian random vari-
ables X, ,, and Y, , may be correlated. That is to say
that the principal directions of the displacement tensor
are not parallel to the axes x and y. We can define a
new pair of sets of random variables X, and Y; ,
where

Xim=X mcos 0+ Y, sinf (13a)
Yim=—X, nsinf+7Y,, cosb (13b)

which are uncorrelated. That is to say
(X =4; Y5)=B; (X|nY|n)= 0~(14)

We then assume that each set of random variables
X} nand Y; . is obtained via a growth-disorder-model
construction so that ensemble averages of the lattice
distributions may be expressed in terms of the original
X, and Y, .. Because of translational invariance we
need only consider

(X wXooy=Acos?@r"s™ + Bsin? Gy

(15)
<X1,m Yo.0> = <Yl,mXo,0>
=Asinfcos Gr's"™
— Bsin G cos 81" u'™ (16)

and

(Y Yooy=Asin?@r"s™ + Bcos? 61! u'.
17)
The four nearest-neighbour correlation coefficients r,
s, ¢t and u refer to the following interactions: r is the

correlation between neighbouring X’ displacements in
the x direction; s is the correlation between neigh-

GAUSSIAN GROWTH-DISORDER MODELS

bouring X' displacements in the y direction; ¢ is the
correlation between neighbouring Y’ displacements in
the x direction; u is the correlation between neigh-
bouring Y’ displacements in the y direction. Note that
cross correlations, between for example the X'
displacement of one atom with the Y’ displacement of
its neighbour, are zero.

Neglecting constant factors such as atomic scat-
tering factors we can write the scattered intensity from
such a model as

I= >_: Z. Z Z €Xp [lk.x(ll - 12 + X1|.m| - XI,.mz)

Loy ms

+ iky(ml —my + YI..m. - YI.Am.)]' (18)

If we wrap the lattice around a torus, the model has
translational symmetry, and we may write the average
intensity as

I1=73 % exp(ik, ! + ik,m) (explik (X, . — Xq,0)

I m
+ ik (Y, — Yo )D). (19)

Substituting for the averages of the Gaussians from
(15), (16) and (17) the intensity expression becomes the
sum of two terms; a Bragg intensity and a diffuse
intensity.

I(K)gagg = exp (—2W) > 3 exp (ik, | + ik,m) (20)

I m

I(R)gimyse = exp (—2W) X 3 fexp (20, " 5™

I m
+ ZWB t\[l ulm\] —1 }

x exp (tk, I + ik, m).

@1

Using a power-series expansion for the exponential and
then using the binomial theorem, we obtain

QW )" 2Wy)e
I(k)diﬂ‘use = exp (_2 W) Z Z TQ!_
roQ
1 — 2
X
1+ 12722 —2r" ¢ cos (kx)]

1 — s y¥
x ) 2
1+ 52" u*¢ — 25" u¢ cos (k,)

].(22)

Here P and Q are non-negative integers and P=Q =0
is excluded from the sum. The term exp (—2W) is the
‘Debye—Waller’ factor with

QW =2W,+2Wy=Ak, cos 6+ k, sin 6)*
+ B(—k,sin 6 + k, cos 6)°. (23)

It may be shown that the sum over P and Q always
converges but the convergence is slow if 2, or 2W,
or both are large quantities. For small W, and W, and
rstu < 1 only the leading terms of (22) need be
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considered. Each of these is seen to be a set of fringes
with a profile given by the familiar diffuse-peak formula
as given. for example, by Guinier (1963), p. 269. Each
set of diffuse fringes is modified by a factor stemming
from the W4 W¢/P!Q! term in (22) which has a
node or zero line passing through the origin of reciprocal
space and lying normal to.the direction of displace-
ment of the independent random variable X" or Y’
from which the set of fringes originates. The fact that
even for small values of the mean-square amplitudes A
and B the values of W, and W, become appreciable at
large angles in reciprocal space means that at high
angles more terms of (23) must be included. This has
the effect of broadening the diffuse fringes stemming
from the primary correlation. We illustrate these effects
by showing some examples of optical transforms of the
model in Fig. 2.

In all cases in Fig. 2 the X' variables represent
displacements in a direction approximately 30° above
horizontal to the left, and the Y’ variables represent
displacements normal to these approximately 30° from
the vertical. In Fig. 2(a) the X' variables have a
standard deviation of 5% of the lattice spacing and are
correlated with coefficients of 0-7 vertically and 0-3
horizontally. The Y’ variables have zero amplitude. In
Fig. 2(b) the X' variables have zero amplitude and the
Y’ variables a 5% standard deviation with correlations
of —0-7 vertically and —0-3 horizontally. Fig. 2(c) has
the same X' values as in Fig. 2(a) but now the Y’
variables also have a 5% standard deviation but are
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uncorrelated. Similarly, Fig. 2(d) has the same Y
values as in Fig. 2(b) but the X' variables now also
have a 5% deviation but are uncorrelated. Fig. 2(e)
shows both X' and Y' variables together with 5%
standard deviations and the same correlation values of
0-7 and 0-3 for X' and —0-7 and —0-3 for Y'. Finally,
in Fig. 2( /) these same correlation values are present
but the standard deviation of the X' variables has been
increased to 15%.

4. Extension to higher dimension

Both the joint distribution on the unit cell. (1), and the
corresponding conditional probability factors, (3) to
(6), are easily carried over into 3D and higher
dimensions. Expressions may be written down by
inspection but at least for the 3D case the conditional
probability factors have been combined and the form of
the joint distribution verified.

Consider the 3D unit cell ABCDEFGH in Fig. 3. In
an analogous way to (2) we require the general joint
distribution on the unit cell to factorize in the following
way.

Pl X.-l'XH‘X("XD'XE‘XF'X(J'XH): P{XA)P(XH"!XA)
% PIXAX) PP Xl X s X XD
X PUH X X XK T s XX

x POL IR e Xakak (24)

N

Fig. 2. Optical transforms for the 2D growth-disorder model. See text for details.



766

The conditional probabilities which refer to the 2D
faces of the cell have a form given by (6) with the two
correlations appropriate for that face, while the final
term in (24) may be written

P(Xy/X 1, X5 X 0 X X o X X 5) = K exp {[— (X,
—rXg—SX.—tX, + X,
+ stXy + rsXp —rstX )
X [20%(1 —sH)(1 — ry))(1 — )71} (25)

In four dimensions the distribution on the 16 points of
the hypercubic cell depicted in Fig. 3 may be split into
conditional probability factors which refer to four 3D
volumes, six 2D faces and four 1D edges, along which
the primary correlations r, s, ¢t and u run. By analogy
with (25) the form of the final term involving the
probability of P given the fifteen other points on the
hypercube is

P(Xp/X ..., Xo) = K exp{i—(Xp — rX, — sX,
— X, —uXy + suXp + stX; + tuX, + ruXg + rsX,, -
+ rtXg — rstX; — rsuXz — rutX¢ — sutXy + rstuX ,)?
x [20%(1 — r2)(1 — s2)(1 — 2)(11— u?)]- 1]}, (26)

The property of the geometric correlation field is
carried over into these higher dimensions.

Our prime concern in formulating these higher-
dimensional models has been to facilitate the computer
generation of optical diffraction masks to model
disorder problems encountered in X-ray diffraction.
However, while these distributions are necessarily two
dimensional, the employment of projections of higher-
dimensional models adds considerable diversity to the
distributions that may be achieved and examples of
these are given in § 6.

5. Conversion of Gaussian to binary models

Many problems of disorder that arise in X-ray
diffraction can appropriately be described in terms of
binary variables, e.g. the substitutional disorder in
molecular crystals (see e.g. Welberry & Jones, 1980). It
was for this reason that our early interest in growth-
disorder models concentrated on binary models.
However, although useful 2D binary models were

(a) )]
Fig. 3. Site labelling for (a) 3D and (b) 4D growth-disorder model.

GAUSSIAN GROWTH-DISORDER MODELS

developed (Welberry, 1977) the extension to 3D
(Welberry, Miller & Pickard, 1979) proved exceedingly
tedious and moreover provided only a restricted range
of short-range-order properties. For this reason we
investigate the possibility of converting the present
Gaussian growth-disorder models to binary ones since
they are easily formulated in higher dimensions and
also provide a complete range of nearest-neighbour
correlation values.

The aim therefore is as follows. We use a Gaussian
model to produce realizations of a disordered lattice.
Each Gaussian random variable, X;; say, is then
converted to a binary variable, Y, ;say, by setting

Y;;=—1 forX;  <c

Y, =+1 forX, >c[ @n

We seek to find the relationship between the binary
concentration, § = (1 + (Y;;))/2 and the constant c,
and more importantly the relationship between cor-
relation coefficients r, between two Gaussian variables
and r, between the corresponding binary variables.

We first consider the simple case when ¢ = 0 and s
evidently 0-5. The Gaussian probability density for two
real variables which have zero mean and unit variance
is
x?+ 3?2 reXy
+
20~r) (1-=r)

(28)

The correlation coefficient between the resulting
binary variables is

1

T 251 )

1
P(x,y) = — ——exp| —
O = T =y P

Ty

X }o }o sign (x) sign ()

-0 —0
x4 p?
2(1—r))

re Xy
(1—=rp)

Putting p = xy and ¢ = x/» and treating the four
quadrants separately we find

. j’f’ j’-"exp —plg+4q '—2r)] dpdg
*T a1 =) 2(1—1) 2g

X exp [— ] dxdy. (29)

00
c ¢ [-plg+q ' +2r)] dpdg
[ ol 2L
5 2(1—=rp) 2q
Integrating over p and then over g gives
r,=—arc sin(r,). (30)
T

From this result we first note that r, can take values
over the whole range from —1 to + 1. In addition, we
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see that, except for the three points r, = r,=—1,0, +1,
Iryl < Ir,l. This second property affects the way in
which correlations decay with distance and we will no
longer have the geometric form characteristic of simple
binary or Gaussian growth-disorder models.

It is interesting to compare the way in which the
low-order correlations decay. In Table 1 we list values
of the first four correlation values for three models: (a)
a Gaussian or simple binary model with a first-order
correlation of 0-6366; (b) a rectified Gaussian model
from this work with a binary correlation value of
0-6366; (c) the two-dimensional Ising model on a
square lattice, at the transition temperature, in the [11]
direction (see Cheng & Wu, 1967). It is seen from
Table 1 that in respect of the way correlations decay
with distance, the rectified Gaussian model is a better
approximation to the Ising model than the simple
Gaussian or binary growth-disorder models themselves.

We next consider the more difficult case of ¢ # 0.
Referring again to the bivariate Gaussian probability
density, (28), we find the binary concentration, 6, by
considering

(sign(x —c)y =20—1=—erf(27"2¢c). (31)

To obtain ¢ we use Newton’s rule and an approxi-
mate computation of erf(2-2 ¢) (Hastings, 1957, p.
169). For the binary correlation, r,, we consider

P,, = (sign(x —c¢)sign(y — ¢))

=ry+ (1 —rp) lerf(272 0))% (32)

we proceed as follows:

27(1 — r2)"”?

P, ___off sign (x — ¢) sign (¥ — ¢)

xP+ yr—2r,xp

dx dy.
21— 1) ] ey

X exp [—

Putting the sign function in the integral form sign (x) =
(1/m) 22, (sin a.x)/a da and using the Fourier transform
of the Gaussian probability density, we obtain after
some algebra

dP 2 c?
L =(—)(l—r§)"/2exp - .
dr, n 1+7r,

Table 1. Comparison of the low-order correlation
coefficients of growth-disorder models with those for
the Ising model at the transition temperature

First Second Third Fourth
Simple binary 0-6366 0-4053 0-2580 0-1643
Rectified Gaussian 0-6366 0-5008 0-4063 0-3343
Ising [11] direction 06366 0-5404 0-4893 0-4556
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Hence

2

n(l P,) ‘ ! (—4c? xHd
-(1=-Pexp|—}= | —— —1e? x%)dx.
4 e () UJ (x2+ 1) P

(33)

Here R is related to the Gaussian correlation, r,, by

R l—rg 1/2.
l+r,

Thus for given values of P,, and ¢ we need to solve (33)
for R and hence obtain r,, the Gaussian correlation
required to produce the desired binary correlation r,.
To do this we use a numerical technique based on
Newton’s rule. From (33) we find successive
approximations.

(34)

c¢*R?
R,,1=R,+ (1 +R2)exp 5 ")

x [f(l —Pav)exp(—‘i)

4 2

P (—czx2 ]
_Ofx”_lexp 5 )dx . (39)

For the first approximation, R, we use the following
form which gives the correct value for R in three cases;
R=0,R=1,R - .

Ry=(1—P,){(1 + erf(2 "2icl))
X [Py, + 1 —2erf(2 "2lch)]"2} ' (36)

In practice we have found satisfactory convergence
for the above procedure except in cases involving large
negative correlations, although our investigations have
mainly been confined to regions where 0-3 < < 0-7.

6. The use of Gaussian growth-disorder models for
producing optical diffraction models of disordered
lattices

In this section we discuss examples designed to
illustrate the use of Gaussian growth-disorder models in
optical transform work, but first we discuss briefly the
practical details of how realizations are produced and
optical transforms made.

For all examples the actual Gaussian model is used
in the conditional probability form typified by (3)-(6).
These are univariate Gaussian distributions and as such
are directly amenable to use in a computer program in
conjunction with a pseudo-random-number generator.
Particular care must be taken with regard to the latter
since standard generators often contain unwanted
correlations. Qur procedure is as follows. Uniformly
distributed pseudo-random numbers are first obtained
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from the Fortran library routine RANDU on our
Digital Equipment PDP-11. To improve the random
ness of these numbers a buffer of 100 values is stored in
memory. For each number used two calls to RANDU
are required. The first is used to select at random one
value from the buffer and the second replaces the
extracted value with a new one. To generate Gaussian
distributed random numbers from these we currently
use the polar method of Marsaglia described in James
(1980).

Realizations of lattice distributions are written
directly onto film using an Optronics P-1700
Photomation System (see Harburn. Miller & Welberry.
1974). Optical diffraction patterns are recorded using a
laser diffractometer similar to that described by
Harburn. Taylor & Welberry (1975). The films are
frequently used directly in air. which introduces some
phase errors in the Fourier transform due to variations
in film and emulsion thickness. For most purposes
involving the short-range effects in which we are
interested and for the fine scale of plot that we employ
the errors are not serious and present themselves only
as a flare around Bragg peaks. Enclosing the film in an
optical gate containing a medium whose refractive
index is matched to that of the film can largely remove
these errors. but is much more tedious to use.

In the first example we illustrate the use of Gaussian
variables to represent rigid-body motion in a molecular
crystal. We describe a hypothetical structure of
benzene with molecules placed at the nodes of a square
lattice. The Gaussian random variables are used to

i+

-
.

#

TR
=X =]
P

L A
* . @

- “.
x 32 °%
* . = -
. L JERE R IR R

e et ol

(VA
Fig. 4. A small representative portion of a typical diffraction mask and optical transforms showing the use of Gaussian growth-disorder
maodels for thermal perturbations in molecular crystals. See text for details.
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represent either displacéments (horizontally and ver
tically) or librations about an axis in the plane of the
paper. Correlations between neighbouring molecular
displacements or orientations are introduced to model
the effect of acoustic phonons. Fig. 4(a) shows a small
portion of a typical diffraction screen: the originals
contained ~30000 molecules. Figs. 4(b)-( /) show
optical transforms of screens in which various effects
have been included. For Fig. 4(b) each molecule was
allowed independently to be displaced by a Gaussian
variable from its mean position in each of two
independent directions. On a scale where the side of the
hexagon is 1-4 A the standard deviation is 0-122 A,
For Fig. 4(¢) each molecule was allowed independently
to be rotated about the centre of mass by an amount
given by a single Gaussian variable with a standard
deviation of 5°. For Fig. 4(d) the same distribution for
a single molecule as in Fig. 4(¢) was included but
neighbouring molecular orientations were now cor
related with coefficients of 0-5 in both directions. For
Fig. 4(e) the same distribution for a single molecule as
in Fig. 4(b) was included but neighbouring molecular
displacements were now correlated with coefficients of
0-5. both transverse and longitudinal in both directions.
Finally. in Fig. 4(/) both translations and displace
ments were included (independently) and again all
nearest-neighbour correlation coefficients were 0-5.

We now discuss an example designed to illustrate the
use of multidimensional growth-disorder models. While
the realizations which are used for optical diffraction
are necessarily two dimensional the problems encoun
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tered in X-ray diffraction are often fully three-
dimensional, and we need to consider a projection of
such distributions. Furthermore, since it is realized that
a growth-disorder model cannot produce the most
general distribution on a given lattice, additional
flexibility can often be obtained by using projections
onto two dimensions of higher-dimensional models. In
the example we discuss here we show how the same 2D
structure can be considered as a projection from 3D or
4D in addition to the more obvious 2D representation
and we explore the resulting diversification of the
derived diffraction patterns.

In addition we use the Gaussian-to-binary con-
version procedure so that in the illustrated realizations
the short-range order is more readily apparent.
However, for convenience we shall refer to the
Gaussian correlation coefficients, r,, that were used,
rather than the resulting binary correlations, r,. The
‘concentration’ in all cases was 0-5 so (30) should be
used for the conversion.

Fig. 5 illustrates the example. We have a square
lattice which has four atomic positions per unit cell and
we suppose that each of the four positions is either
occupied (dot) or unoccupied (black). The four
positions within one unit cell are in the form of a square
sub-unit which is rotated by about 18° to the axial
directions of the lattice. Three different ways in which
these sites may be linked to neighbours are shown and
growth-disorder models may be used to introduce
correlations along these ‘bonds’. In each of the three
figures four distinct primary correlations may be
introduced. These are shown by the four heavy lines
and in all cases each of the remaining vectors is
identical to that one of these primary vectors to which it
is parallel.

The connections or linkages for Fig. 5(c) correspond
to the 4D model discussed in §4 and the growth-
disorder model construction for this topology uses the
factorization of the 16-point distribution on (4, B, ...,
P) discussed above, (26). Vectors such as AI, BJ, CG
and AE correspond to cell repeats in the 2D realization
while the other two dimensions are used to relate
positions within the unit cell by vectors such as 4B and

(@)

Fig. 5. Different ways in which the same 2D arrangement of atomic sites can be linked using different-dimension growth-disorder models.
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AC. The connections shown in Figs. 5(a) and (b)
correspond to alternative factorizations of the same
16-point distribution. Fig. 5(a) corresponds to a
factorization in which only conditional probabilities
relating to 2D growth-disorder models are involved.
while Fig. 5(b) corresponds to a factorization involving
3D terms. Thus, for example, Fig. 5(b) corresponds to
the factorization

P(X,,....Xp)= P(X,)P(Xg/X,)P(X /X))
X P(Xp/X 4 Xg, X¢)
X P(X,/X,) P(X /X s X X))
X P(X,/X . X X))
X P(X, /X X Xeo X s X 1o X X )
X P(Xg/X o) P(Xe/ X XpoXg)
X P(Xp/ Xps X X i)
X P(Xn/Xcs Xpy Xps Xpy X X1, Xo)
X P(XG/XE)P(XH/XG’XE’XF)
X P(Xp/ Xy Xgo Xny)
X P(XP/XL-"XI-"XG’XH?XM’XN*XO)'

It is not feasible here to explore the full four-
dimensional correlation space for each of these exam-
ples and in Figs. 6 and 7 we compare only a selection of
realizations and their transforms. The samples of the
realizations shown in Fig. 6 are small sections of those
used to obtain the transforms shown in Fig. 7. The
original diffraction masks contained about 10° unit cells
or 2 x 10° scattering points. The vertical columns of
examples shown have constant values of the ‘internal’
correlations r,; and 7,.. The left column has r 5 = 7 ¢
= —0-8; the central column r,, = r, = 0-0; and the
right column, r,; = r, = +0-8. The four rows of
examples explore the effect of the different topologies
by showing the patterns when each of the primary
correlations ¢, g, for 2D, rey, r,, for 3D and 7, 1y
for 4D takes a value of —0-4 (rows 2, 3 and 4). The top
row shows the patterns when all but the ‘internal’
correlations. 7,; and r,., are zero. The relationship of
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the realizations to Fig. 5 is most apparent when the
internal correlations are positive and square sub-units
occur fully occupied quite frequently, as for example in
Fig. 6(c).

The difference between the three topologies is most
evident in the central column where the ‘internal’

(@)

(d)

(0))
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correlations are zero. In Fig. 7(¢) the transform shows
diffuse fringes normal to and of a spacing reciprocal to
the vectors BI and CE., with a minimum passing
through the origin because of the negative correlation.
In Fig 7(h) there are still the same fringes normal to
CE, but in the horizontal direction the fringing is due to

(@))

(k)

Fig. 6. Examples of diffraction screens for the models shown in Fig. 5. See text for details.
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the longer cell vector A/. In Fig. 7(k) the fringes are
normal to the longer vectors in both directions and the
diffuse pattern shows the full symmetry of the square
unit cell.

The effect of the “internal’ correlations r, and r, . is
evident in the top row of photographs where the diffuse
fringes show clearly the 18° rotation of the square

771

sub-units. For all examples in each of the columns the
broad features of the distribution of intensity follows
that seen most clearly in the top row. but this overall
distribution is modified by the between-cell correlations.
Here interesting differences arise because of the
different topologies. Let us compare the 2D and 3D
examples for the negative “internal’ correlations. Figs.

(a)

(W)

Fig. 7.

(b)

(k)

Optical transforms corresponding to lattice realizations. small portions of which appear in Fig. 6.
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7(d) and (g). For the 2D case, since r,, and rg, are both
negative the correlation for the cell repeat, r,,. is
positive and the fringes in Fig. 7(d) are seen to coincide
with rows of Bragg peaks. In the 3D case of Fig. 7(g).
r,, is set to be negative and hence the fringes occur
between the vertical rows of Bragg peaks. For the
corresponding examples with positive ‘internal’ cor-
relation, Figs. 7(/) and (i), the difference is less marked
since in this case the vector Al has a negative
correlation in both cases. For the 3D case it is —0-4 by
definition while for the 2D case it is the product of r
= +0-8 and rz = —0-4. The fringes for the 2D case
are seen to be somewhat more diffuse.

The three different topologies illustrated in this
example are by no means the only factorizations of the
basic 16-point distribution that it is possible to use for a
growth-disorder model procedure. Nevertheless they
serve to illustrate that suitable choice of the fac-
torization allows considerable diversity in the way in
which interactions can be built into lattices with the use
of growth-disorder models. The diversity is such that
for use in tackling problems in X-ray diffraction it is
likely that a distribution approximating that desired can
be found by this means.

7. Conclusion

The three main developments that have stemmed from
the current work are:

(i) the ability to represent disorder problems in
which a description in terms of a continuous Gaussian
variable is appropriate, e.g. thermal perturbations;

(i) the ability to produce realizations in 3D or
higher dimensions with no restriction on the range of
nearest-neighbour correlations:

(iii) the ability to work entirely with Gaussian
variables and to convert these to binary variables where
appropriate.

Together these three properties represent a consider-
able increase in the flexibility of growth-disorder models
for producing disordered lattice realizations suitable for
optical analogue modelling of problems encountered in
X-ray diffraction experiments.

There are two aspects of growth-disorder models
which remain somewhat unsatisfactory, however. The
first of these is that construction of the lattice must
always use the square as the basic unit in 2D (or the
cube in 3D). The growth-disorder-model solutions, of
the type described here, impose the condition that

GAUSSIAN GROWTH-DISORDER MODELS

correlations along the diagonals of such units must be
the product of correlations along the edges. If we
consider the triangle (or the tetrahedron in 3D) to be
the more natural basic unit this means that cor-
relations along the three edges cannot be chosen
independently but must conform to the ‘product rule’
that the correlation along one side is the product of the
correlations along the other two. The second, though
related, aspect is that the resulting correlation field is
decidedly non-isotropic since the correlation coeffi-
cients given by equations such as (7) necessarily imply
that the correlations along the axes decay more slowly
than in the diagonal directions. The result of this is that
diffuse diffraction peaks have a decided ‘cross-shape’
appearance rather than the more rounded appearance
that more general distributions might yield. Future
work will be aimed at further exploration of these
aspects of growth-disorder models.
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